Question	Answer	Mark
1(a)	Method 1: Long distance / distance in field measured with the tape One student fires pistol at one end (of this distance) Student at other end starts stop-watch on seeing smoke/light from pistol and st/ ops stop-watch on hearing sound of pistol speed $=($ measured $)$ distance $/$ (measured) time Method 2: Distance of 50 m or more from a vertical wall measured with the tape Student 1 fires pistol at this distance from the wall Student 2 standing next to student 1 starts stop-watch on hearing pistol and stops stop-watch on hearing echo speed $=2 \times$ (measured) distance $/$ (measured) time	$\begin{aligned} & \text { B1 } \\ & \\ & \text { (B1) } \end{aligned}$
(b)(i)	$\begin{aligned} & v=f \lambda O R(\lambda=) v / f O R 1500 / 200 \\ & 7.5 \mathrm{~m} \end{aligned}$	C1 A1
(b)(ii)	1 (frequency) does not change 2 (speed) decreases	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
		Total: 8

2 (a (i) 1. Mark amplitude with X B1
2. Mark wavelength with \mathbf{Y} B1
(ii) 1. Amplitude increases and wavelength stays the same B1
2. Amplitude stays the same and wavelength decreases B1
(b) $\mathrm{v}=($ total $)$ distance/time $\mathrm{OR} \mathrm{d} / \mathrm{t}$ OR 2d/t in any form C1
$d=1500 \times 0.054 / 2$ C
40 m OR 41 m A1
3 (a (i) (compression is a) region of higher pressure OR region where air layers/particles/molecules are closer B1
(ii) 1. distance between (two successive/adjacent) compressions B1
2. number of compressions (passing a point) per second/unit time OR number of compressions emitted per second/unit time B1
(b) (i) $(f=) v / \lambda$ OR $340 / 0.0085$ 40000 Hz OR 40 kHz
(ii) frequency/pitch is above the upper threshold for human hearing $/ 20 \mathrm{kHz}$ OR it is ultrasound B1
(iii) ($d=$) vt in any form: words, symbols, numbers C1
41 m or 40.8 m A
4 (a (in compressions) pressure higher OR molecules/atoms/particles close(r) together/(more) tightly packed
(b) $\quad v=f \lambda$ in any form $O R(\lambda=) v / f$ OR 340/850 $=0.40 \mathrm{~m}$A1
(ii) distance (of compression A from barrier) $=2.5 \times 0.40$ OR 1.0 m C time $($ to reach barrier $)=1 / 340=2.9 \times 10^{3} \mathrm{~s}$ OR 2.9 msOR T $(=1 / \mathrm{f})=1 / 850$ OR $0.4 / 340$ OR 1.2×10^{3}(C1)(moves 2.5 wavelengths:) time $=2.5 / 850=2.9 \times 10^{3} \mathrm{~s}$ OR 2.9 ms(A
(c) two circular arcs centred on mid-point of gap in barrier by eye B1along centre line, arcs separated by the same distance as adjacent compressionsapproaching barrierB1
(d) (speed in water) greater OR numerical value greater than $340 \mathrm{~m} / \mathrm{s}$ B
5 (a (region of) low(er) pressure OR where molecules are further apart B1
(b) (i) 0.19 m B1
(ii) $v=f \lambda$ OR 7800×0.19 OR $1500 / 1480 / 1482(\mathrm{~m} / \mathrm{s})$ OR $0.76 / 1500 \mathrm{OR} 1 / 7800$ OR 4/7800 etc. ecf from (i) C1
$5.1(28205) \times 10^{4} \mathrm{~s}$ ecf from (i) A1
(c) (i) unchanged/stays the same/constant OR 7800 Hz
(ii) increases B1
(d) three wavefronts (rarefactions) joined to those below B1
three wavefronts with their upper ends further to the right AND parallel B1
6 (a speed of sound in gas: $300 \mathrm{~m} / \mathrm{s}$ B
speed of sound in solid: $3000 \mathrm{~m} / \mathrm{s}$ B
(b) particles/molecules/atoms oscillate/vibrate
OR pressure variation/compressions/rarefactions/displacements move B1
in the direction of travel (of the wave/sound)
(c) (i) two complete wavelengths/cycles with shorter wavelength B1
wave drawn has greater amplitude B1
(ii) higher frequency/pitch B1
louder/higher volume B1

