Question	Answer	Mark
1(a)	Method 1: Long distance / distance in field measured with the tape One student fires pistol at one end (of this distance) Student at other end starts stop-watch on seeing smoke / light from pistol and st / ops stop-watch on hearing sound of pistol speed = (measured) distance / (measured) time <u>Method 2:</u> Distance of 50 m or more from a vertical wall measured with the tape	B1 B1 B1 B1 (B1) (B1)
	Student 1 fires pistol at this distance from the wall Student 2 <u>standing next to student 1</u> starts stop-watch on hearing pistol and stops stop-watch on hearing echo speed = $2 \times (\text{measured})$ distance/(measured) time	(B1) (B1)
(b)(i)	$v = f\lambda OR (\lambda =) v/f OR 1500/200$ 7.5 m	C1 A1
(b)(ii)	 (frequency) does not change (speed) decreases 	B1 B1
		Total: 8

2	(a	(i)	1. 2.	Mark amplitude with X Mark wavelength with Y	B1 B1
		(ii)	1. 2.	Amplitude increases <u>and</u> wavelength stays the same Amplitude stays the same <u>and wavelength</u> decreases	B1 B1
	(b)	C1 C A1			
					[Total: 7]
3	(a	(i)	(co OR	mpression is a) region of higher pressure region where air layers/particles/molecules are closer	B1
		(ii)	1. c	distance between (two successive/adjacent) compressions	B1
			2. r OR	number of compressions (passing a point) per second/unit time I number of compressions emitted per second/unit time	B1
	(b)	(i)	(f = 40 () <i>ν/λ</i> OR 340/0.0085 000 Hz OR 40 kHz	
		(ii)	frec OR	quency/pitch is above the upper threshold for human hearing/20kHz t it is ultrasound	B1
		(iii)	(<i>d</i> = 41 i	=) <i>vt</i> in any form: words, symbols, numbers m or 40.8 m	C1 A
					[Total: 8]

4	(a	(in compressions) pressure higher OR molecules/atoms/particles close(r) together/(more tightly packed		
	(b)		v = f λ in any form OR (λ =) v/f OR 340/850 = 0.40 m	A1
		(ii)	distance (of compression A from barrier) = 2.5×0.40 OR 1.0 m time (to reach barrier) = $1/340 = 2.9 \times 10^{-3}$ s OR 2.9 ms	С
			OR T (= 1/f) = 1/850 OR 0.4/340 OR 1.2×10^{-3} (moves 2.5 wavelengths:) time = 2.5/850 = 2.9×10^{-3} s OR 2.9 ms	(C1) (A
	(c)	two aloi app	circular arcs centred on mid-point of gap in barrier <u>by eye</u> ng centre line, arcs separated by the same distance as adjacent compressions proaching barrier	B1 B1
	(d)	(sp	eed in water) greater OR numerical value greater than 340 m/s	B Fotal: 8]
5	(a	(re	gion of) low(er) pressure OR where molecules are further apart	B1
	(b)	(i)	0.19m	B1
		(ii)	$v = f\lambda$ OR 7800 × 0.19 OR 1500/1480/1482 (m/s) OR 0.76/1500 OR 1/7800 OR 4/7800 etc. ecf from (i) 5.1(28205) × 10 ⁻⁴ s ecf from (i)	C1 A1
	(c)	(i)	unchanged/stays the same/constant OR 7800 Hz	
		(ii)	increases	B1
	(d)	thre thre	ee wavefronts (rarefactions) joined to those below ee wavefronts with their upper ends further to the right AND parallel	B1 B1
			ſ	Total: 8]

					[Total: 8]
			louder/higher volum	ne	B1
		(ii)	higher frequency/pit	tch	B1
			wave drawn has grea	ater amplitude	B1
	(c)	(i)	two complete wavele	engths/cycles with shorter wavelength	B1
		in tl	ne direction of travel ((of the wave/sound)	
	(b)	par OR	icles/molecules/ator pressure variation/co	ms oscillate/vibrate ompressions/rarefactions/displacements <u>move</u>	B1
		spe	ed of sound in solid:	3000 m/s	В
6	(a	spe	ed of sound in gas:	300 m/s	В